BANGUNRUANG SISI DATAR LIMAS DAN PRISMA TEGAK Materi. Jenis Jenis Dan Sifat Sifat Segitiga Konsep Matematika. Luas Segi N Beraturan Asimtot S Blog. Sifat Limas Segitiga Dan Limas Segiempat Rahasia Pintar Jumlah sudut pada bangun datar berbentuk bintang April 23rd, 2018 - Bangun datar seperti gambar di dalam segi lima sd sederhanakan Kurvakurva dan selang yang diberikan membatasi daerah yang tergambar pada Gambar 3. Kita akan gunakan tiga prosedur: potong, aproksimasi, integralkan, untuk menentukan luas daerah tersebut. Gambar 3. CONTOH 2: Tentukan luas daerah antara kurva y = x4 y = x 4 dan y = 2x−x2 y = 2 x − x 2. datardalam posisi tegak sebagai sumbu y. 3. Peserta didik menggambar garis AB dengan titik A(x,y) dan B(x, y) pada sumbu koordinat cartesius pada buku berpetak dan menentukan bayangannya. 4. Salah satu kelompok mempresentasikan hasil diskusinya, anggota kelompok lain menanggapinya 5. Guru memberi penguatan materi Penutup (3 menit) 1. Jawabanpaling sesuai dengan pertanyaan tentukan asimtot datar dan asimtot tegak grafik fungsi tersebut Dịch Vụ Hỗ Trợ Vay Tiền Nhanh 1s. Masih berkaitan dengan artikel sebelumnya, kali ini pun kita masih membahas tentang asimtot, lebih tepatnya asimtot pada fungsi rasional. Sebelum mempelajari materi ini, saya sarankan anda membaca artikel sebelumnya mengenai asimtot, atau klik pada link ini. Sebelum kita mulai materi bagaimana cara menentukan asimtot, mari kita paahami dulu beberapa istilah yang akan kita gunakan, yaitu asimtot, fungsi rasional, dan hole. Apa Itu Asimtot? Asimtot adalah suatu garis yang terus didekati oleh suatu kurva garis lengkung sampai jauh takhingga. Banyak yang mengartikan, "didekati" artinya sama sekali tidak pernah memotong, namun itu keliru. Kurva bisa juga memotong asimtotnya. Namun meskipun memotong, kurva tetap terus mendekati asimtot ke arah $+\infty$ atau $-\infty$. Biar lebih jelasnya perhatikan gambar berikut Gamabar di atas, kurva mendekati asimtot ke arah $x$ menuju $-\infty$, kurva juga memotong asimtot pada $x$ positif, hal ini mungkin terjadi, karena definisi asimtot sendiri penekanannya adalah pada "kurva mendekati asimtot" bukan masalah memotong atau tidak memotong. Asimtot terbagi menjadi 4 jenis bentuk yaitu 1. Asimtot datar Horizontal Asymtote Asimtot datar adalah asimtot yang sejajar atau berimpit dengan sumbu $x$. 2. Asimtot tegak Vertical Asymtote Asimtot tegak adalah asimtot yang sejajar atau berimpit dengan sumbu $y$. 3. Asimtot miring Slant Asymtote atau Oblique Asymtote Asimtot miring adalah asimtot yang tidak sejajar dengan sumbu $x$ maupun sumbu $y$. 4. Asimtot kurva Curvilinear Asymtote Asimtot kurva adalah asimtot yang tidak berupa garis lurus, melainkan sebuah kurva garis lengkung Apa Itu Fungsi Rasional? $fx$ dikatakan sebagai fungsi rasional jika memenuhi bentuk $fx=\frac{gx}{hx}$ dengan $gx$ dan $hx$ merupakan polinomial. Atau dengan kata lain, fungsi rasional adalah fungsi yang berupa pecahan dengan penyebut dan pembilang berupa polinomial. Apa Itu "Hole"? Secara bahasa "hole" bisa kita terjemahkan sebagai "lubang", maksudnya adalah lubang secara grafis. Perhatikan grafik fungsi $fx=\frac{2x-4}{x^2-4}$ berikut Pada grafik fungsi $fx=\frac{2x-4}{x^2-4}$ di atas, hole lubang terbentuk ketika $x=2$, hal ini terjadi karena jika kita substitusikan $x=2$ ke dalam fungsi $fx=\frac{2x-4}{x^2-4}$, maka kita peroleh $f2=\frac{0}{0}$ seperti yang kita ketahui $\frac{0}{0}$ merupakan bentuk tak tentu. $\begin{align*}f\left x \right &=\frac{2x-4}{x^2-4}\\&=\frac{2x-2}{x+2x-2} \\&=\frac{2}{x+2}\hspace{2cm}\text{dengan }x\ne 2\end{align*}$ sekarang, coba perhatikan grafik $fx=\frac{2x-4}{x^2-4}$ di atas dengan grafik $fx=\frac{2}{x+2}$ berikut Ternyata, grafik $fx=\frac{2x-4}{x^2-4}$ dengan $fx=\frac{2}{x+2}$ identik, kecuali pada hole-nya. Cara Menentukan Asimtot Tegak Vertical Asymptotes Langkah-langakahnya adalah sebagai berikut Faktorkan penyebut dan pembilanganya jika memungkinkan "coret" faktor yang sama pada penyebut dan pembilang. Bagian penyebut yang kita coret penyebab hole, dan yang tidak kita coret dari sanalah kita menemukan asimtot tegaknya. Contoh 1 Tentukan asimtot tegak dan hole pada fungsi $fx=\frac{2x^2-5x-12}{x^2-5x+4}$ Jawab $\begin{align*}fx&=\frac{2x^2-5x-12}{x^2-5x+4}\\&=\frac{x-42x+3}{x-4x-1}\\&=\frac{2x+3}{x-1}, x\ne4\end{align*}$ Faktor yang sama pada pembilang dan penyebut adalah $x-4$, dengan demikian hole terjadi ketika $x=4$ Perhatikan penyebut pada baris terakhir, yaitu $x-1$. Penyebut bernilai nol ketika $x=1$, dengan demikian asimtot tegaknya adalah $x=1$. Contoh 2 tentukan asimtot tegak dan hole pada fungsi $fx=\frac{3x+1x+4}{x-7x+4}$. Jawab Faktor yang sama pada pembilang dan penyebut adalah $x+4$, dengan demikian hole nya adalah $x=-4$ Perhatikan penyebut selain $x+4$, yaitu $x-7$, penyebut sama dengan nol ketika $x=7$ dengan demikian asimtot tegaknya adalah $x=7$. Cara Menentukan Asimtot Datar, Asimtot Miring dan Asimtot Kurva. Misal diketahui fungsi rasional $$fx=\frac{ax^n+bx^{n-1}+cx^{n-2}+\cdots+k}{px^m+qx^{m-1}+rx^{m-2}+\cdots+z}$$ maka Jika $n\lt m$, maka asimtot datarnya adalah $y=0$. Jika $n=m$, maka asimtot datarnya adalah $y=\frac{a}{p}$ Jika $n>m$, maka asimtotnya berupa asimtot miring atau asimtot kurva. Contoh 3 Tentukan asimtot datar atau asimtot miring dari fungsi $fx=\frac{12x^5+4x^2+1}{3x^6+5x^3+12}$ Jawab Karena derajat pangkat tertinggi pembilang derajat pangkat tertinggi penyebut, asimtotnya berupa asimtot miring atau asimtot kurva, cara menentukannya adalah dengan melakukan pembagian polinomial, hasil baginya merupakan persamaan asimtot. $fx=\frac{2x^3-3}{x^2-1}=2x+\frac{2x-3}{x^2-1}$ maka asimtot nya adalah $y=2x$ asimtot miring dengan gradien 2 Contoh 6 Tentukan asimtot datar, asimtot miring atau asimtot kurva dari fungsi $fx=\frac{x^3+4x^2+4x+5}{x}$ Jawab $fx=\frac{x^3+4x^2+4x+5}{x}=x^2+4x+4+\frac{5}{x}$ maka asimtotnya adalah $y=x^2+4x+4$ asimtot kurva Demikianlah cara menentukan asimtot dari fungsi rasional, semoga bermanfaat. $\blacksquare$ Denih Handayani, 1 September 2017 Prakalkulus Contoh Mencari Asimtot fx=1/x-1 Step 1Tentukan di mana pernyataan tidak 2Mempertimbangkan fungsi rasional di mana merupakan derajat dari pembilangnya dan merupakan derajat dari Jika , maka sumbu-x, , adalah asimtot Jika , maka asimtot datarnya adalah garis .3. Jika , maka tidak ada asimtot datar ada sebuah asimstot miring.Step 4Karena , sumbu x, , adalah asimtot 5Tidak ada asimtot miring karena pangkat dari pembilangnya lebih kecil dari atau sama dengan pangkat dari Ada Asimtot MiringStep 6Ini adalah himpunan semua Tegak Asimtot Datar Tidak Ada Asimtot Miring Blog Koma - Pada artikel ini kita akan membahas materi Asimtot Tegak dan Mendatar Fungsi Aljabar. Apa sih asimtot itu? Asimtot adalah suatu garis lurus yang akan didekati oleh suatu kurva baik secara tegak asimtot tegak atau secara mendatar asimtot mendatar atau mendekati miring disebut asimtot miring, akan kita pelajari pada materi lainnya termasuk pada asimtot kurva hiperbola. Garis yang kita sebut asimtot ini akan selalu didekati oleh kurva namun tidak pernah bersentuhan atau tidak akan berpotongan antara garis dan kurva tersebut di titik jauh tak terhingga jaraknya semakin lama semakin kecil mendekati nol. Di sini, kurva yang kita maksud adalah grafik selain garis lurus. Apakah semua fungsi aljabar memiliki asimtot? Tentuk jawabannya tidak. Kita akan coba bahas seperti apa syarat suatu fungsi aljabar memiliki asimtot tetak atau asimtot mendatar. Sebagai gambaran bentuk dari Asimtot Tegak dan Mendatar Fungsi Aljabar, perhatikan grafik dibawah ini dari fungsi $ fx = \frac{x+1}{x-2} $. Persamaan asimtot tegaknya adalah $ x = 2 $ dan persamaan asimtot mendatarnya adalah $ y = 1 $. Untuk titik-titik jauh tak terhingga ujung-ujung grafik lengkung semakin mendekati asimtotnya. Untuk mempermudah mempelajari materi Asimtot Tegak dan Mendatar Fungsi Aljabar ini, sebaiknya teman-teman menguasai materi "grafik persamaan garis lurus", "limit fungsi aljabar", dan "limit tak hingga". Tentu yang lebih ditekankan di sini adalah penguasaan materi limitnya. Asimtot Tegak Fungsi Aljabar Fungsi $ y = fx $ memiliki asimtot tegak misalkan $ x = a $ jika terpenuhi $ \displaystyle \lim_{x \to a } fx = +\infty $ atau $ \displaystyle \lim_{x \to a } fx = -\infty $ . Artinya terdapat $ x = a $ yang jika kita cari nilai limit mendakati $ a $ akan menghasilkan nilai $ +\infty $ atau $ -\infty $ dimana $ a \neq \infty $ . Untuk fungsi aljabar, kondisi ini memiliki asimtot tegak jika fungsinya berbentuk pecahan. Fungsi $ y = \frac{fx}{gx} $ memiliki asimtot $ x = a $ jika $ ga = 0 $ dan $ fa \neq 0 $, artinya $ x = a $ adalah akar dari $ gx $ yang sebagai penyebutnya dan berbeda dengan akar pembilangnya INGAT suatu bilangan dibagi $ 0 $ pada limit hasilnya $ \infty$. Suatu fungsi aljabar bisa memiliki lebih dari satu asimtot tegak. Asimtot Mendatar Fungsi Aljabar Fungsi $ y = fx $ memiliki asimtot mendatar misalkan $ y = b $ jika terpenuhi $ \displaystyle \lim_{x \to +\infty } fx = b $ atau $ \displaystyle \lim_{x \to -\infty } fx = b $ dengan $ b \neq +\infty $ atau $ b \neq -\infty$. Artinya untuk $ x $ mendekati $ +\infty $ atau $ -\infty $ maka nilai fungsinya akan mendekati nilai konstanta tertentu yaitu $ b $. Agar memiliki asimtot mendatar, biasanya fungsinya berbentuk pecahan. Catatan asimtot mendatar i. Cukup terpenuhi salah satu saja yaitu $ \displaystyle \lim_{x \to +\infty } fx = b $ atau $ \displaystyle \lim_{x \to -\infty } fx = b $, maka $ y = b $ sudah bisa dikatakan sebagai persamaan asimtot mendatar fungsi $ y = fx $. ii. Karena penghitungannya menggunakan limit $ x $ mendekati $ +\infty $ atau $ x $ mendekati $ -\infty $ maka ada tiga kemungkinan hasilnya untuk fungsi berbentuk pecahan yaitu a. pangkat pembilang dan penyebut tertingginya sama, maka ada asimtot mendatarnya, b. pangkat pembilang lebih kecil dari pangkat penyebutnya, maka ada asimtot mendatarnya yaitu $ y = 0 $, c. pangkat pembilang lebih besar dari pangkat penyebutnya, maka ada tidak ada asimtot mendatarnya, akan tetapi kemungkinan besar memiliki asimtot miring. Contoh Soal Asimtot Tegak dan Mendatar Fungsi Aljabar 1. Tentukan persamaan asimtot tegak dan asimtot mendatar fungsi $ fx = \frac{x+1}{x-2} $ jika ada! Penyelesaian *. Asimtot tegaknya Perhatikan penyebutnya yaitu $ x - 2 $ yang memiliki akar $ x = 2 $. Sehingga persamaan asimtot tegaknya adalah $ x = 2 $ karena $ \displaystyle \lim_{x \to 2 } \, \frac{x+1}{x-2} = \infty $. *. Asimtot mendatar -. Nilai limit untuk $ x $ mendekati $ + \infty $ $ \displaystyle \lim_{x \to + \infty } \, \frac{x+1}{x-2} = 1 $ -. Nilai limit untuk $ x $ mendekati $ - \infty $ $ \displaystyle \lim_{x \to - \infty } \, \frac{x+1}{x-2} = 1 $ Sehingga persamaan asimtot mendatarnya adalah $ y = 1 $. Catatan Untuk memudahkan dalam menentukan persamaan asimtot mendatarnya, kita harus benar-benar menguasai materi limt tak hingga yang bisa teman-teman baca pada artikel "penyelesaian limit tak hingga". 2. Tentukan persamaan asimtot tegak dan asimtot mendatar dari fungsi $ fx = \frac{3}{x^2 - 3x - 10 } $ ! Penyelsaian *. Asimtot tegaknya Perhatikan penyebutnya yaitu $ x^2 - 3x - 10 = x+2x-5 $ yang memiliki akar $ x = -2 $ dan $ x = 5 $. Sehingga persamaan asimtot tegaknya adalah $ x = -2 $ dan $ x = 5 $ karena $ \displaystyle \lim_{x \to - 2 } \, \frac{3}{x^2 - 3x - 10 } = \infty $ dan $ \displaystyle \lim_{x \to 5 } \, \frac{3}{x^2 - 3x - 10 } = \infty $. *. Asimtot mendatar -. Nilai limit untuk $ x $ mendekati $ +\infty $ $ \displaystyle \lim_{x \to +\infty } \, \frac{3}{x^2 - 3x - 10 } = \frac{3}{\infty} = 0 $ -. Nilai limit untuk $ x $ mendekati $ -\infty $ $ \displaystyle \lim_{x \to -\infty } \, \frac{3}{x^2 - 3x - 10 } = \frac{3}{\infty} = 0 $ Sehingga persamaan asimtot mendatarnya adalah $ y = 0 $. 3. Tentukan persamaan asimtot tegak dan asimtot mendatar dari fungsi $ fx = \frac{3x^2 + x - 5}{x^2 + 2x} $ ! Penyelsaian *. Asimtot tegaknya Perhatikan penyebutnya yaitu $ x^2 + 2x = xx+2 $ yang memiliki akar $ x = -2 $ dan $ x = 0 $. Sehingga persamaan asimtot tegaknya adalah $ x = -2 $ dan $ x = 0 $ karena $ \displaystyle \lim_{x \to - 2 } \, \frac{3x^2 + x - 5}{x^2 + 2x} = \infty $ dan $ \displaystyle \lim_{x \to 0 } \, \frac{3x^2 + x - 5}{x^2 + 2x} = \infty $. *. Asimtot mendatar -. Nilai limit untuk $ x $ mendekati $ + \infty $ $ \displaystyle \lim_{x \to +\infty } \, \frac{3x^2 + x - 5}{x^2 + 2x} = \frac{3}{1} = 3 $ -. Nilai limit untuk $ x $ mendekati $ - \infty $ $ \displaystyle \lim_{x \to -\infty } \, \frac{3x^2 + x - 5}{x^2 + 2x} = \frac{3}{1} = 3 $ Sehingga persamaan asimtot mendatarnya adalah $ y = 3 $. 4. Tentukan persamaan asimtot tegak dan asimtot mendatar dari fungsi $ fx = \frac{x^3+1}{x-1} $! Penyelsaian *. Asimtot tegaknya Perhatikan penyebutnya yaitu $ x-1 $ yang memiliki akar $ x = 1 $ . Sehingga persamaan asimtot tegaknya adalah $ x = 1 $ karena $ \displaystyle \lim_{x \to 1 } \, \frac{x^3+1}{x-1} = \infty $. *. Asimtot mendatar Nilai limit untuk $ x $ mendekati $ \infty $ $ \displaystyle \lim_{x \to \infty } \, \frac{x^3+1}{x-1} = \infty $ Sehingga fungsi $ fx = \frac{x^3+1}{x-1} $ tidak memiliki asimtot mendatar. 5. Tentukan persamaan asimtot tegak dan asimtot mendatar dari fungsi $ fx = \frac{x^2 - 2x - 3}{x+1} $! Penyelsaian *. Coba kita sederhanakan dulu fungsinya $ fx = \frac{x^2 - 2x - 3}{x+1} = \frac{x+1x-3}{x+1} = x - 3 $. Ternyata fungsinya berbentuk $ fx = x - 3 $ yang artinya bukan berbentuk pecahan, sehingga tidak memiliki persamaan asimtot tegak dan asimtot mendatar. 6. Tentukan persamaan asimtot tegak dan asimtot mendatar dari fungsi $ fx = \frac{x - 5}{\sqrt{x^2-3x+2}} $! Penyelsaian *. Asimtot tegaknya Perhatikan penyebutnya yaitu $ x^2-3x+2 = x-1x-2 $ yang memiliki akar $ x = 1 $ dan $ x = 2 $ . Sehingga persamaan asimtot tegaknya adalah $ x = 1 $ dan $ x = 2 $ karena $ \displaystyle \lim_{x \to 1 } \, \frac{x - 5}{\sqrt{x^2-3x+2}} = \infty $ dan $ \displaystyle \lim_{x \to 2 } \, \frac{x - 5}{\sqrt{x^2-3x+2}} = \infty $. *. Asimtot mendatar -. Nilai limit untuk $ x $ mendekati $ + \infty $ $ \displaystyle \lim_{x \to + \infty } \, \frac{x - 5}{\sqrt{x^2-3x+2}} = 1 $ -. Nilai limit untuk $ x $ mendekati $ - \infty $ $ \displaystyle \lim_{x \to - \infty } \, \frac{x - 5}{\sqrt{x^2-3x+2}} = -1 $ Sehingga persamaan asimtot mendatarnya adalah $ y = -1 $ dan $ y = 1 $. 7. Tentukan persamaan asimtot tegak dan asimtot mendatar dari fungsi $ fx = \sqrt{4x^2 - 2x + 1} - \sqrt{4x^2 + 2x - 5} $! Penyelsaian *. Asimtot tegaknya Fungsi $ fx = \sqrt{4x^2 - 2x + 1} - \sqrt{4x^2 + 2x - 5} $ tidak memiliki asimtot tegak $ x = a $ karena tidak ada yang memenuhi $ \displaystyle \lim_{x \to a } \, \sqrt{4x^2 - 2x + 1} - \sqrt{4x^2 + 2x - 5} = \infty $. *. Asimtot mendatar -. Kita ubah dulu menjadi bentuk pecahan dengan merasionalkan $ \begin{align} fx & = \sqrt{4x^2 - 2x + 1} - \sqrt{4x^2 + 2x - 5} \times \frac{\sqrt{4x^2 - 2x + 1} + \sqrt{4x^2 + 2x - 5} }{\sqrt{4x^2 - 2x + 1} + \sqrt{4x^2 + 2x - 5} } \\ fx & = \frac{-4x + 6}{\sqrt{4x^2 - 2x + 1} + \sqrt{4x^2 + 2x - 5} } \end{align} $ -. Nilai limit untuk $ x $ mendekati $ + \infty $ $ \displaystyle \lim_{x \to + \infty } \, \frac{-4x + 6}{\sqrt{4x^2 - 2x + 1} + \sqrt{4x^2 + 2x - 5} } = \frac{-4}{ = -1 $ -. Nilai limit untuk $ x $ mendekati $ - \infty $ $ \displaystyle \lim_{x \to - \infty } \, \frac{-4x + 6}{\sqrt{4x^2 - 2x + 1} + \sqrt{4x^2 + 2x - 5} } = \frac{4}{ = 1 $ Sehingga persamaan asimtot mendatarnya adalah $ y = -1 $ dan $ y = 1 $. Soal-soal untuk menentukan Asimtot Tegak dan Mendatar Fungsi Aljabar ternyata dikeluarkan pada SBMPTN 2017 Seleksi Bersama Masuk Perguruan Tinggi Negeri untuk matematika IPA atau saintek. Berikut saya kami sajikan 4 Soal SBMPTN 2017 berkaitan materi asimtot tegak dan asimtot mendatar fungsi aljabar, silahkan teman-teman mencobanya. Jika kesulitan, maka teman-teman bisa ikuti link pembahasan disetiap soalnya. Nomor 12, SBMTPN 2017 Kode 165 Diketahui fungsi $ fx = \frac{ax+5}{\sqrt{x^2+bx+1}} $ dengan $ a > 0 $ dan $ b < 0 $. Jika grafik fngsi $ f $ mempunyai satu asimtot tegak dan salah satu asimtot datarnya adalah $ y = -3 $ , maka $ a + 2b $ adalah ..... A. $ -2 \, $ B. $ -1 \, $ C. $ 0 \, $ D. $ 1 \, $ E. $ 2 $ Nomor 12, SBMPTN 2017 Kode 166 Jika kurva $ y = \frac{x^3 - 3x +2}{\frac{1}{a}xx^2-ax-6} $ mempunyai dua asimtot tegak, maka asimtot datar dari kurva tersebut adalah .... A. $ y = 1 \, $ B. $ y = \frac{1}{2} \, $ C. $ y=-\frac{1}{2} \, $ D. $ y = -1 \, $ E. $ y = -2 $ Nomor 12, SBMPTN 2017 Kode 167 Di antara pilihan berikut, kurva $ y = \frac{x^3+x^2+1}{x^3+10} $ memotong asimtot datarnya di titik $ x = .... $ A. $ 0 \, $ B. $ 1 \, $ C. $ 2 \, $ D. $ 3 \, $ E. $ 4 $ Nomor 12, SBMPTN 2017 Kode 168 Grafik fungsi $ fx = \frac{x+2^kx^2-1}{x^2+x-2x^2+3x+2} $ , $ k $ bilangan asli, mempunyai satu asimtot tegak jika $ k = .... $ A. $ 1 \, $ B. $ 2 \, $ C. $ 3 \, $ D. $ 4 \, $ E. $ 5 $ Demikian pembahasan materi Asimtot Tegak dan Mendatar Fungsi Aljabar dan contoh-contohnya. Silahkan juga baca materi lain yang berkaitan dengan "Asimtot miring Fungsi Aljabar" serta "Asimtot Tegak dan Mendatar Fungsi Trigonometri". Salam Para BintangPernah kalian mendengar kata asimtot? Sekarang kita akan membahas secara detail dalam artikel ini. Semoga artikel ini bermanfaat ya. Materi inni adalah salah materi yang dipelajari di Matematika Minat kelas XII IPA yang menjadi salah satu Bab Limit Tak Hingga. Banyak siswa terkadang kurang memahami materi ini karean jarang diajarkan di tingkatan sekolah. Dalam mempelajari Asimtot ini kalian harus terlebih dahulu tentang limit fungsi aljabar dan limit tak hingga. Semoga ini bisa membantu Juga Materi, Soal dan Pembahasan Super Lengkap Limit Tak Hingga Soal UTBK SBMPTN, SIMAK UI,UM UGM dan UNDIPPengertian Asimtot Asimtot adalah suatu garis lurus yang didekati oleh yang didekati oleh sebuah kurva baik secara tegak asimtot tegak atau secara mendatar asimtot datar atau mendekati miring asimtot miring. Garis yang kita namakan asimtot akan selalu didekati oleh kurva tetapi tidak pernah bersentuhan atau tidak akan pernah berpotongan antara garis dan kurva tersebut di titik jauh tak terhingga Jaraknya semakin lama mendekati nol.A. Asimtot DatarJika jarak suatu kurva terhadap suatu garis datar mendekati nol,maka garis tersebut adalah asimtot datar dari y = L disebut asimtot mendatar dari grafik fungsi y = fx jika memenuhidengan B. Asimtot TegakJika jarak suatu kurva terhadap suatu garis vertikal mendekati nol maka garis tegak tersebut adalah asimtot tegak dari x = a disebut asimtot tegak dari fungsi y = fx jika memenuhi dengan Untuk fungsi rasional yang berbentuk , garis x = a adalah asimtot tegak dari grafik fungsi tersebut jika Untuk memahami materi asimtot ini, dan penggunaan konsep di atas mari kita bahas contoh soal berikut Contoh 1Tentukan asimtot datar dan tegak dari fungsi Pembahasana. Asimtot MendatarUntuk menentukan asimtot mendatar perlu dipahami konsep Untuk nilai x mendekati , maka Untuk nilai x mendekati , maka Sehingga asimtot mendatar adalah y = 1b. Asimtot TegakUntuk menentukan asimtot tegak perlu dipahami konsep Garis x = a disebut asimtot tegak dari fungsi y = fx jika memenuhi Karena penyebut adalah x + 2, maka karnya x = -2 sehingga persamaan asimtot tegaknya adalah x = -2 karena Contoh 2Tentukan asimtot datar dan tegak dari fungsi PembahasanSebelum kita menentukan asimtot datar dan tegak fungsi , perlu kita sederhanakan dulu fungsi tersebutNah, diperoleh bahwa fx = x -3 yang merupakan sebuah persamaan garis lurus. Sehingga dipastikan bahwa tidak memiliki asimtot datar ataupun asimtot Juga Contoh 3Tentukan asimtot datar dan tegak dari fungsi Pembahasana. Asimtot MendatarUntuk menentukan asimtot mendatar perlu dipahami konsep Untuk nilai x mendekati , maka Fungsi tidak memiliki asimtot datar karena hasil limit adalah untuk x b. Asimtot TegakUntuk menentukan asimtot tegak perlu dipahami konsep Garis x = a disebut asimtot tegak dari fungsi y = fx jika memenuhi Karena penyebut adalah x -1, maka karnya x = 1 sehingga persamaan asimtot tegaknya adalah x = 1 karena Contoh 4Diketahui dari fungsi , dengan a > 0 dan b 0, maka nila a yang digunakan adalah a = 3. jadi, nilai a + 2b = 3 + 2-2 =-1Contoh 5Diantara pilihan berikut, kurva memotong asimtot datarnya di titik x =....A. 1 B. 2 C. 3 D. 4 E. 5PembahasanUntuk menentukan asimtot mendatar adalah denganmaka Dengan mensubsitusi nilai y = 1 ke , maka diperoleh Jadi, titik potongnya adalah x = 3 tau x = -3 dan pilihan jawabannya adalah x = 3 C Baca Juga Soal, Materi Limit di Tak Hingga Fungsi Trigonometri Mirip Soal UTBK SBMPTNPengertian, Rumus Dasar , Contoh Soal Limit Fungsi Trigonometri pada Matematika Minat

menentukan asimtot datar dan tegak